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CHAPTER ONE

Introduction

Modeling, analysis, and control of dynamic systems have been of interest to engineers
for a long time. Within recent years the subject has increased in importance for three
reasons. Before the invention of the digital computer, the calculations required for
meaningful applications of the subject were often too time consuming and error prone
to be seriously considered. Thus gross simplifications were made, and only the simplest
models of transient behavior were used, if at all. Now, of course, the widespread
availability of computers, as well as pocket calculators, allows us to consider more
detailed models and more complex algorithms for analysis and design.

Second, with this increased computational power, engineers have correspondingly
increased the performance specifications required of their designs to make better
use of limited materials and energy, for example, or to improve safety. This leads to
the need for more detailed models, especially with regard to the prediction of transient
behavior.

Finally, the use of computers as system elements for measurement and control
now allows more complex algorithms to be employed for data analysis and decision
making. For example, intelligent instruments with microprocessors can now calibrate
themselves. This increased capability requires a better understanding of dynamic
systems so that the full potential of these devices can be realized.

1.1 SYSTEMS

The term system has become widely used today, and as a result, its original meaning
has been somewhat diluted. 4 system is a combination of elements intended to act
together to accomplish an objective. For example, an electrical resistor is an element
for impeding the flow of current, and it usually is not considered to be a system in the
sense of our definition. However, when it is used in a network with other resistors,
capacitors, inductors, etc., it becomes part of a system. Similarly, a car’s engine is a
system whose elements are the carburetor, the ignition, the crankshaft, and so forth.
On a higher level the car itself can be thought of as a system with the engine as an
element. Since nothing in nature can be completely isolated from everything else,
we see that our selection of the “boundaries” of the system depends on the purpose
and the limitations of our study. This in part accounts for the widespread use of the
- term system, since almost everything can be considered a system at some level.

The Systems Approach

Automotive engineers interested in analyzing the car’s overall performance would not
have the need or the time to study in detail the design of the gear train. They most
likely would need to know only its gear ratio. Given this information, they would

1




2  Introduction

then comsider the gear train as a “black box.” This term is used to convey the fact
that the details of the gear train are not important to the study (or at least constitute
a luxury they cannot afford). They would be satisfied as long as they could compute
the torque and speed at the axle, given the torque and speed at the drive shaft.

The black-box concept is essential to what has been called the “systems
approach” to problem solving. With this approach each element in the system is
treated as a black box, and the analysis focuses on how the connections between the
elements influence the overall behavior of the system. Its viewpoint implies a willing-
ness to accept a less detailed description of the operation of the individual elements
in order to achieve this overall understanding. This viewpoint.can be applied to the
study of either artificial or natural systems. It reflects the belief that the behavior of
complex systems is made up of basic behavior patterns that are contributed by each
element and that can be studied one at a time.

The behavior of a black-box element is specified by its input-output relation.
An input is a cause; an output is an effect due to the input. Thus the input-output
relation expresses the cause-and-effect behavior of the element. For example, a voltage
v applied to a resistor R causes a current i to flow. The input-output or causal relation
is i = v/R. Its input is v, its output is i, and its input-output relation is the preceding
equation. ‘

Block Diagrams

The black-box treatment of an element can be expressed graphically, as shown in
Figure 1.1. The box represents the element, the arrow entering the box represents

the input, and that leaving the box stands
N for the output. Inside the box we place
the mathematical expression that relates
the output to the input, if this expression
‘ is not too cumbersome, and is known. This
(5 graphical representation is a block diagram.
The diagram in Figure 1.1a represents

E E R

1

X ovm———

f— %. — the resistor with input v and output i. They
{e) are related by the constant 1/R. Figure 1.1
a—s] S v shows the representation of a spring whose
d) resisting tensile force f is proportional to

its extension x so that f= kx. Figure 1.1c
v—> [ |—>=x ‘shows how a force f applied to a mass m
causes an acceleration a. The governing
relation is Newton’s law: f = ma. To obtain
Figure 1.1 Block diagrams of input- & from f, we must multiply the input f by
output relations. (¢) Voltage-current  the constant 1/m. Thus the symbol in the
relation for a resistor. (b) Displacement-  box represents the operation that must be
force relation for a spring. (c) Force- performed on the input to obtain the out-
acceleration relation for a mass. (d) put.

Velocity as the time integral of accel- Not all black-box representations
eration. (e) Displacement as the time  must refer to actual physical elements.
integral of velocity. Since they express cause-and-effect relations

(e)
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they can be used to display processes as well as components. Two examples of this
are shown in Figures 1.1d and 1.1e. If we integrate the acceleration a over time, we
obtain the velocity v, that is, v = [a dt. Thus acceleration is the cause of velocity.
Similarly, integration of velocity produces displacement x: x = [ vdt. The integration
operator within each box in Figures 1.1d and 1.le expresses these facts. Whenever an
output is the time integral of the input, the element is said to exhibit integral causality.
We will see that integral causality constitutes a basic form of causality for all physical
systems.

The input-output relations for each element provide a means of specifying
the connections between the elements. When connected together to form a system,
the inputs to some elements will be the outputs from other elements. For example,
the position of a speedometer needle is caused by the car’s speed. Thus for the speed-
ometer element, the car’s speed is an input. However, the speed is the result of action
of the drive-train element. The input-output relation can sometimes be reversed for
an element, but not always. We can apply a current as input to a resistor and consider
the voltage drop to be the output. On the other hand, the position of the speedometer
needle can in no way physically influence the speed of the car.

The system itself can have inputs and outputs. These are determined by the
selection of the system’s boundary. Any causes acting on the system from the world
external to this boundary are considered to be system inputs. Similarly, a system’s
outputs can be the outputs from any one or more of the elements, viewed in particular
from outside the system’s boundary, If we take the car engine to be the system, a
system input would be the throttle position determined by the acceleration pedal, and
a system output would be the torque delivered to the drive shaft. If the car is taken to
be the system instead, the input would still be the pedal position, but the outputs
might be taken to be the car’s position, velocity, and acceleration. Usually our choices
for system outputs are a subset of the possible outputs and are the variables in which
we are interested. For example, a performance analysis of the car would normally
focus on the acceleration or velocity, but not on the car’s position.

A simple example of a system diagram is provided in Figure 1.2. Suppose that a
mass m is connected to one end of a spring. The other end of the spring is attached to
a rigid support. In addition to the spring force f;, another force f,, acts on the mass.
This force is considered to be due to the external world and acts across the system
“boundary”; that is, it is not generated by any action within the system itself. It might
be due to gravity, for example.
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Figure 1.2  (a) Mass-spring system with an external force f,. (b) Block diagram of
the causal relations.




4 Introduction

The cause-and-effect relations can be summarized by the system diagram in-

Figure 1.2b. The net force on the mass in the direction of positive displacement x is
f» —fs, since the spring will pull up on the mass if the mass position is below the rest
position (x > 0). The addition and subtraction of forces to produce the net force are
represented by a new symbol, the comparator —a circle whose output is the signed
sum of the inputs. The plus (+) sign indicates that f,, is to be added; the minus )
sign indicates that f; is to be subtracted to produce the net force.

The system input is f,; its output could be any or all of the variables generated
within the diagram. If we are interested only in the displacement x, then its arrow is
shown leaving the system. '

System diagrams such as this are a visually concise summary of the interplay
between the causes and the effects. We will use them often.

Static and Dynamic Systems

In general the present value of an element’s output is the result of what has happened
to the element in the past as well as what is currently affecting it. For example, the
present position of a car depends on where it started and what its velocity has been
from the start. We define a dynamic element to be one whose present output depends
on past inputs. Conversely, a static element is one whose output at any given time
depends only on the input at that time.

For the car considered as an element with an acceleration pedal position as input
and car position as output, the preceding definition shows the element to be dynamic.
On-the other hand, we can consider a resistor to be a static element because its present
current depends only on the voltage applied at present, not on past voltages. This is
an approximation, of course, because the resistor cannot respond instantaneously to
voltage changes. This is true of all physical elements, and we therefore conclude that a
static element is an approximation. Nevertheless, it is widely used because it results in
a simpler mathematical representation. _

In popular usage the terms static and dynamic are used to distinguish situations
in which no change occurs from those that are subject to changes over time. This
usage conforms to the preceding definitions of these terms if the proper interpretation
is made. A static element’s output can change with time only if the input changes and
will not change if the input is constant or absent. However, if the input is constant or
is removed from a dynamic element, its output can still change. For example, if
the car’s engine is tumed off, the car’s position will continue to change because
of the car’s velocity (because of past inputs). A similar statement cannot be made
for the electrical resistor.

In the same way we also speak of static and dynamic systems. A static system
contains all static elements. Any system that contains at least one dynamic element is
a dynamic system.

-

1.2 MODELING, ANALYSIS, AND CONTROL

We live in a universe ‘that is undergoing continual change. This change is not always
apparent if its time scale is long enough, such as with some geologic processes, but as
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engineers we often must deal with situations in which time-dependent effects are
important. For example, design of high-speed production machinery for precise
operation requires that the vibrational motions due to high accelerations be small in
amplitude and die out quickly. Likewise, time-dependent behavior of fluid—flow and
heat-transfer processes significantly affects the quality of the product of a chemical
process. Even a relatively “stationary” object like a bridge must be designed to
accommodate the motions and forces produced by a heavy rolling load.

Modeling

In order to deal in a systematic and efficient way with problems involving time-
dependent behavior, we must have a description of the objects or processes involved.
We call such a description a model. A model for enhancing our understanding of the
problem can take several forms. A physical model, like a scale model, helps us to
visualize how the components of the design fit together and can provide insight not
obtainable from a blueprint (which is another model form). Graphs or plots are still
another type of model. They can often present time-dependent behavior in a concise
way, and for that reason we will rely heavily on them throughout this study. The
model type we will use most frequently is the mathematical model, which is a descrip-
tion in terms of mathematical relations. These relations will consist of differential or
difference equations if the model is to describe a dynamic system.

The concept of a mathematical model is undoubtedly familiar from elementary
physics. Common examples include the voltage-current relation for a resistor v = iR,
and the force-deflection relation for a spring f = kx. One of our aims here is to intro-
duce a framework that allows the development of mathematical models for describing
the time-dependent behavior of many types of phenomena: fluid flow, thermal pro-
cesses, mechanical elements, and electrical systems, as well as some nonphysical
applications. In this regard, it is important to remember that the precise nature of a
mathematical model depends on its purpose. For example, an electrical resistor can be
subjected to mechanical deformations if its mounting board is subjected to vibration.
In this case, the force-deflection spring model could be used to describe the resistor’s
mechanical behavior.

Thus we see that the nature of any object has many facets: thermal, mechanical,
electrical, etc. No mathematical model can deal with all these facets. Even if it could,
it would be useless because its very complexity would render it cumbersome. We can
make an analogy with maps. A given region can be described by a road map, a terrain-
elevation map, a mineral-resources map, a population-density map, and so on. A single
map containing all this information would be cluttered and useless. Instead, we select
the particular type of map required for the purpose at hand. In the same way, we
select or construct a mathematical model to suit the requirements of the study.

The purpose of the model should guide the selection of the model’s time scale,
its length scale, and the particular facet of the object’s nature to be described (thermal,
mechanical, electrical, etc.). The time scale will in turn determine whether or not
time-dependent effects should be included. (Tectonic plate motion constitutes time-
dependent behavior on a geologic time scale but would not be considered by an
engineer designing a bridge.) Similarly, the length scale partly dictates what details
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should or should not be included. The engineer analyzing the dynamics of high-speed
machinery might treat a component as a point mass, whereas this approximation is
useless to a metallurgist studying material properties at the molecular level.

Block diagrams are often used to display the mathematical model in a form that
allows us to understand the interactions occurring between the system’s elements. For
example, the mathematical model of the mass-spring system shown in Figure 1.2a is

Jo—fs = ma
f =k
x éfv‘dt
v=Igdt

Each equation is a cause-and-effect relation for one part of the system.
The diagram is a valuable aid, -but if we wish to solve for the displacement
x(t), we need the model in equation form. If we differentiate the last two relations

we obtain
a_ ., A,
dt dt
or
a — d_i{
dr
! Substitution of this and the second relation into the first gives
1
| d*x
) —kx = padiiebd
fo mar (1.2-1)

: This differential equation is a quantitative description of the system. Given f,, k, m,
! and the initial position x(0) and velocity v(0), we can use the methods of later chapters
‘ to solve the equation for x(z).

Analysis

A mathematical model represents a concise statement of our hypotheses concerning
the behavior of the system under study. We can deal with the verification of the model
in two ways. Verification by experiment or testing is ultimately required of all serious
design projects. This is not always done at the outset of a study, however, especially
if one is dealing with component types whose behavior is known to be well described
by a specific model on the basis of past experience. For example, we are on firm
ground in using the resistor model v = iR without verification, as long as the operating
conditions (voltage levels, temperatures, etc.) are not extreme. This is often the case
for the types of problems we will be considering, since we will be concerned with the
behavior of systems consisting of components whose individual behavior is often well
understood. '

Once we are satisfied with the validity of our chosen component models, they
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can be used to predict the performance of the system in question. Predicting the
performance from a model is called analysis. For example, the current produced in a
resistor by an applied voltage v can be predicted to be i = v/R by solving the resistor
model for the unknown variable i in terms of the given quantities'v and R. Most of our
mathematical models will describe dynamic behavior and thus will consist of differ-
ential or difference equations. They will not be as easy to solve as the algebraic model
just seen. Nevertheless, the techniques for analyzing.such models are straightforward.
These are introduced in Chapter Three.

Just as the model’s purpose partly determines its form, so also does the purpose
influence the types of analytical techniques used to predict the system’s behavior. It
is not possible to discuss these concepts with the simple resistor model, because its
solution is so simple. However, we will be developing many types of analytical tech-
niques whose applicability depends on the purpose of the analysis. Not all of these
techniques will be brought to bear on any one problem, but the engineer should be
familiar with all of them. They are the tools of the trade — a means to an end. We will
not study them, as a mathematician would, for their inherent interest. Instead, we
will focus on how they can help us predict the performance of a proposed design
before it is built. Thus we can avoid a cut-and-try approach. This is especially impor-
tant today since most modern engineering endeavors are too complex and expensive
to allow them to be built without a thorough analysis beforehand.

Control

The successful operation of a system under changing conditions often requires a
control system. For example, a building’s heating system requires a thermostat to turn
the heating elements on or off as the room temperature rises and falls (Figure 1.3).
Note that we have not shown the thermostat as one element because it has two
functions: (1) to measure the room temperature and compare it with the desired
temperature and (2) to decide whether to turn the furnace on or off. The variation
in the outdoor environment is the primary reason for the unpredictable change in
the room temperature. If the outside conditions (temperature, wind, solar insolation,
etc.) were predictable, we could design a heater that would operate continuously to
supply heat at a predetermined rate just large enough to replace the heat lost to the
outside environment. No controller would be necessary. Of course, the real world does
not behave so nicely, so we must adjust the heat-output rate of our system according
to what the actual room temperature is.

Qutdoor
environment
Thermostat P
—————— ctua
Desired I[_ —]On—off Hot l room
temperature | 4 Logic lsignal Water Heating Heat temperature
element | > Furnace > element > Room =
_____ o

Figure 1.3  Block diagram of the thermostat system for temperature control.
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We often wish to alter the desired operating conditions of a system. In our
heating example the thermostat allows the user to specify the desired room temper-
ature, say 68°F during the day and 60°F at night. When the thermostat setting is
changed from 60°F to 68°F in the morning, the thermostat acts to bring the room
temperature up to 68°F and to keep it near this value until the setting is changed
again at night.

The term control refers to the process of deliberately influencing the behavior
of an object so as to produce some desired result. The physical device inserted for this
purpose is the controller or control system. Other common examples of controllers
include:

1. An aircraft autopilot for maintaining desired altitude, orientation, and
speed.

An automatic cruise-control system for a car.

3. A pressure regulator for keeping constant pressure in a water-supply system.

A cutaway view of a commonly used type of pressure regulator is shown in
Figure 1.4 along with a block diagram of its operation. The desired pressure is set by
turning a calibrated screw. This compresses the spring and sets up a force that opposes
the upward motion of the diaphragm. The bottom side of the diaphragm is exposed
to the water pressure that is to be controlled. Thus the motion of the diaphragm is an

Pressure
lIiliy adjustment
= screw
=
Diaphragm =
(area A) =
=
Flow —1 |77 -1
7.
Valve
(a)
) Screw Vaive Valve Output
displacement Valve mass characteristic pressure
x force
—1 & > m > ¢ 3>
Valve
Spring position y
- A =
Diaphragm force
Diaphraqm

(b)

Figure 1.4  Pressure regulator. (a) Cutaway view. (b) Block diagram.
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indication of the pressure difference between the desired and the actual pressures. It

acts like a comparator. The valve is connected to the diaphragm and moves according

to the pressure difference until it reaches a position in which the difference is zero.
From the preceding examples we see that the role of a controller is twofold.

1. It must bring the system’s operating condition to the desired value.

2. It must maintain the desired condition in the presence of variations caused
by the external environment.

In the terminology of the control engineer, we say that the controller must respond
satisfactorily to changes in commands and maintain system performance in the
presence of disturbances.

One or more controllers are often required in complex dynamic systems in order
to make the system elements act together to achieve the intended goal. So the design
of dynamic systems quite naturally involves the study of control systems. On the
other hand, the variations produced by command changes and disturbances tend to
upset the system. Thus control system design requires models that describe the
dominant dynamic properties of the system to be controlled, and the analysis tech-
niques must be capable of dealing with such a model. Modeling, analysis, and control
of dynamic systems therefore constitute a unified area of study.

1.3 TYPES OF MODELS

As we have seen, a system model is a representation of the essential behavior of the
system for the purposes at hand. In order to be useful it must contain the minimum
amount of information necessary to achieve its purpose, and no more. This require-
ment is most immediately reflected in the choice of static- versus dynamic-element
models. Those elements whose behavior is fast relative to other elements are often
modeled as static elements in order to reduce the complexity of the model. For
example, the switching time of a thermostat is fast compared to the time required
for the room temperature to change appreciably. Thus the room temperature in
Figure 1.2 would most likely be modeled as a dynamic element and the thermostat
as a static one.

Lumped and Distributed-Parameter Models

We have implicitly assumed in the heating example that the temperature in the room
can be described by a single number, a temperature that is average in some sense. In
reality the temperature varies according to location within the room, but if we did
not choose to use a single representative temperature the required room model would
be much more complicated.

Many variables in nature are functions of location as well as time. The process
of ignoring the spatial dependence by choosing a single representative value is called -
lumping (room air is considered to be one “lump” with a single temperature).

Lumping an element is a technique usually requiring experience. It reflects
the judgment of the engineer as to what is unimportant in terms of spatial variation.
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It can be described as the spatial equivalent of the process of dividing a system into
static and dynamic elements. The model of a lumped element or system is called a
lumped-parameter model. If it is dynamic, the only independent variable in the model
will be time; that is, the model will be an ordinary differential equation, like (1.2-1).
Only time derivatives will appear, not spatial derivatives.

When spatial dependence is included, the independent variables are the spatial
coordinates as well as time. The resulting model is said to be a distributed-parameter
model. It consists of one or more partial differential equations containing partial
derivatives with respect to the independent variables. The difference is illustrated
in Figure 1.5a, which shows the temperature T of a metal plate. If the plate is

“heated at one side, the temperature will be a function of location and time — T =

T(t,x,y,z) —and the model will be of
the form

f( aT 9°T 9°T azr)

2 y Tit, x, 5, 2) ’ a_t’ 5?’ Ey—z’ 52—2
t i (1.3-1)
* AMAUAA A AR But if the plate temperature is lumped
Flame with a single value, the model will be of
{a) the form '
: dT
, fT,—)=0
T; (1) ’ dt (1.3-2)
T.
| =B which is easier to handle mathematically.
T (e Lumping may be done at several
LAAAANAAANANAY levels. For example, we may take a single
{6) temperature to represent the entire house.

In this case a single differential equation
would result. On the other hand, we may
take a representative temperature for each
room. In this case the total model would
consist of a differential equation for each
room temperature.

Although choosing a temperature for each room leads to several equations,
the model is usually more manageable than if the lumping were not performed. .

There are applications in engineering where a detailed model like (1.3-1) is
required, and we do not dismiss such models as useless. However, we will see that in
analyzing systems with many elements, distributed-parameter models of elements
are a luxury we usually cannot afford because their complexity tends to prevent
us from understanding the overall system behavior. We therefore will limit our treat-
ment to lumped-parameter models. Note that if a more detailed model is needed,
we can increase the number of lumped elements, such as is shown in Figure 1.5b,
where we have used three temperature lumps in an attempt to model the dependence
of the plate temperature as a function of distance from the flame. The resulting model
would have three coupled ordinary differential equations, one for each T;(z).

Figure 1.5 Temperature distribution
in a plate. (a) Distributed-parameter
representation. (b) Lumped-parameter
representation using three elements.
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Linear and Nonlinear Models

We have seen that engineers should attempt to model elements as static rather than
dynamic, and as lumped rather than distributed. The reason is that engineers even-
tually have to analyze the resulting system model, and its complexity can easily get
out of hand if there is too much detail in each element model. In a similar vein we
now discuss the distinction between model types based on linearity.

Let y be the output and x be the input of an element that can be either static
or dynamic. Its model is written as

y = f() (1.3-3)

where the function f(x) may include operations like differentiation and integration.
The model (or element) is said to be linear if, for an input ax; + bx,, the output is

y = flax, + bxy) = af (x) + bf(x;) = ayy + by2 (1.3-4)

where ¢ and b are arbitrary constants, x; and x, are arbitrary inputs, and
y1 = f(x1) (1.3-5)
V2 = flxa) (1.3-6)

Thus linearity implies that multiplicative constants and additive operations in the
input can be factored out when considering the effects on the output. The linearity
property {1.3-4) is sometimes called the superposition principle because it states
that a linear combination of inputs produces an output that is the superposition
(linear combination) of the outputs that would be produced if each input term were
applied separately. Any relation not satisfying (1.3-4) is nonlinear.

Let us consider some input-output relations to see if they are linear. The simple
multiplicative relation y = mux is linear because

y = m(ax, + bx;) =amx; + bmx, =ay, + by,

where y; = mx,; and y, = mx,. The operation of differentiation y = dx/dt is linear

because
dx, dx,
—+b—=ay, + by,

d
= —(ax; + bxy) =
y dt(a Sl e dt dt

Similarly, integration is a linear operation. If y =[x dt, then
y = [ (@ +bxa)de=a [xide+b [xadt=ay, +by,

Any relation involving a transcendental function or a power other than unity is
nonlinear. For example, if y = x?,

y = (ax} + bx3) =ax} + 2abxx, + b?x3 #Faxi + bx3
Similarly, if y = sin x,
y = sin(ax; + bx,) #asinx; + b sinx,

The definition of linearity (1.3-4) can be extended to include functions of more
than one variable, such as f(x, z). This function is linear if and only if

flaxy + bx,y,az, + bz,) = af(xy,zy) + bf(x4,2,)
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Differential equations represent input-output relations also, and can be classified
as linear or nonlinear. The outputs (solutions) of the model depend on the outputs’
initial values and on the inputs. We will see in Chapter Three that a superposition
principle applies to linear differential equations. This is useful because it allows us to
separate the effects of more than one input and thus to consider each input one ata
time. It also allows us to separate the effects of the initial values of the outputs from
the effects of the inputs. For these reasons we will always attempt to obtain a linear
model for our systems provided that any approximations required to do so do not
mask important features of the system’s behavior.

A differential equation is easily recognized as nonlinear if it contains powers Of
transcendental functions of the dependent variable. For example, the following

equation is nonlinear. J

Time-Variant Models

The presence of a time-varying coefficient does not make a model nonlinear. For
example, the model ‘

dy ‘
= +
ot c)yy+f

is linear. Models with constant coefficients are called time-invariant Of stationary
models, while those with variable coefficients are time variant or nonstationary. An
example occurs if the mass m in Figure 1.1 represents 2 bucket of water with a leak.
Its mass would then change with time, andm=m(t)in(1 2-1).

Discrete and Continuous-Time Models

Sometimes it is inconvenient to view the system’s dynamics in terms of a continuous-
time variable. In such cases we use a discrete variable to measure time. Common
examples of this usage include one’s age (we usually express it in integer years, with
* no fractions) and interest computations on savings accounts (compounded quarterly,
annually, etc.). For engineers the most important situation suggesting the use of
discrete-time models occurs when a system contains a digital computer for measure-
ment or control purposes. It is an inherently discrete-time device because it is driven
by an internal clock that allows activity to take place only at fixed intervals. Thus a
digital computer cannot take measurements continuously but must “sample” the
measured variable at these instants. :

If we choose to represent our system in terms of discrete time, the form of the
model is a difference equation instead of a differential equation. For example, an
amount of money X in a savings account drawing 5% interest compounded annually
will grow according to the relation

x(k+1) = 1.05x(k) (13-7)

The index k represents the number of years after the start of the investment. We will
return to the analysis of discrete-time models in Chapter Four.
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Model Order

Equation (1.2-1) is called a second-order differential equation because its highest
derivative is second order. It is equivalent to the relations

md'u f I

e —ox

dt 3 (1.3-8)
dx
o
dt (1.3-9)

These two first-order equations are coupled to each other because of the x term in
the first equation and the v term in the second. One cannot be solved without solving
the other; they must be solved simultaneously. Taken together they thus form a
second-order model.

We will organize our study of dynamic systems partly according to the order
of the model. Chapters Three and Four treat first-order continuous- and discrete-time
models, while Chapter Five covers higher-order models. In this way we can begin
simply and gradually progress to more difficult topics.

Stochastic Models

Sometimes there is uncertainty in the values of the model’s coefficients or inputs. If
this uncertainty is great enough, it might justify using a stochastic model. In such a
model the coefficients and inputs would be described in terms of probability distri-
butions involving, for example, their means and variances. Such a model would be
useful for describing the effects of wind gusts on an aircraft autopilot. Although the
wind is not random, presumably our knowledge of its behavior is poor enough to
justify a probabilistic approach. However, the mathematics required to analyze such
models is beyond the scope of this work, and we will not consider stochastic models
further.

A Model Classification Tree

Figure 1.6 is a diagram of the relationship between the various model types. We have
extended only the branches that lead to linear time-invariant models since this is the
type of most interest to us.

1.4 LINEARIZATION

Because of the usefulness of the superposition principle, we always attempt to obtain
a linear model if possible. Sometimes this can be done from the outset of neglecting
effects that would lead to a nonlinear model. A common example of this is the small
angle approximation. If we assume that the angle of rotation 0 of the lever in Figure
1.7 is small, the rectilinear displacement of its ends is roughly proportional to 8 such
that x = L6. The same is not true for a large enough value of 6.

[f such an approximation is not obvious, a systematic procedure based on the
Taylor series expansion can be used (Appendix A). Let the input-output model for a
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—————— Increasing ease Increasing realism —————>=
of analysis

Static Dynamic

/T~

Deterministic Stachastic

/T~

Lumped Distributed
parameter parameter

/T

Linear Nonlinear

/T

Constant Variable
coefficient Coefficient

/TN

Discrete Continuous
time time

. A}
First-order Second-order e e o (Higher—order )

Coupled first-order

Figure 1.6 Classification of mathematical models. We have not continued the tree
on every branch for simplicity. For example, nonlinear models can also be classified
as discrete or continuous time. ’

static element be written as
w = f) (14-1)

Its form is sketched in 2 general way in Figure 1.8. A model that is approximately
linear near the reference point (Wg,Yo) can be obtained by expanding f(y)ina
Taylor series near this point and truncating the series beyond the first-order term.
The series is :

)= a\ v+ L(E) o
w = f(y)"f(yo)"' (dy)o(y yo)+2!(dy2)o(y, yo)2 +... (1.4-2)

Figure 1.7 Small-angle approximation for the displacement of a lever endpoint. For
0 small, x = L0.
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w = fly)
Z = mx
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Figure 1.8  Linearization of the function w = f(») about the point (w,, ;).

where the subscript “0” on the derivatives means that they are evaluated at the
reference point (w,,y,). If y is “close enough” to y,, the terms involving (y —yo)
for i = 2 are small compared to the first two terms. Ignoring these higher-order terms
gives

w = f)=f(ro) + (gf‘) (0752525,
Y o

(1.4-3)
This is a linear relation. To put it into a simpler form let
df
m=il==
dyl, (1.4-4)
z=w—w,=w—f(¥,) (1.4-5)
X=9—7, (1.4-6)
Then (1.4-3) becomes
z = mx (1.4-7)

The geometric interpretation of this result is shown in Figure 1.8. We have
replaced the original function with a straight line passing through the point Wo,Y0)
and having a slope equal to the slope of f(y) at the reference point. With the (z;x)
coordinates, a zero intercept occurs and the relation is simplified.

A Nonlinear Spring Exarl:lple

No spring is linear over an arbitrary range of extensions. Instead, the force will increase
nonlinearly with extension beyond some point, and the linear model used to obtain
(1.2-1) will no longer be valid. Suppose the correct relation for a particular spring is
f=y?*, where y is the extension of the spring from its free length (Figure 1.9). Let
it be attached to the mass as shown in Figure 1.2 and allow the mass to settle to its
rest position y,. At this position the weight of the mass will equal the spring force
so that mg = y3, or y, =~/mg. The Taylor series applied to the spring relation f = y*
gives

dy*
=~ 2 _ 2 + | — g
fieys =y (dy)o(y Vo)

= ytz) +2yo(y—yo)
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Lotize i~ Varand x=sYe.
Thus

e

Wit z = 2Ypx (1.4-8)

The variable z is the change in spring force
7 | from its value at the rest position y,.
| Equation (1.4-8) shows that the force
1 change is approximately linear if y is close
‘ to y,; thatis, if x is small.

l‘ The free-body diagram of the mass is
‘ shown in Figure 1.10, with the gravity
| force and spring force being the only forces
| applied to the mass. From Newton'’s law,
I

|

|

1

I

|

|

3

d*x :
m a7 = mg—(fot2)

Using (1.4-8) and the fact that mg = y2 =

l | f,,, we obtain
4 5

2

Figure 1.9 Linearization of the func- m 9’_)_: = — 2YX

' = 2 i dt* - (1.4-9)

tion f = y* about the points (1, 1) and ‘

(9, 3). Note the different slopes for

each linearization. which is a linear equation. If we had not
approximated the spring force as a linear
function, the system’s differential equation

would have been

d?.
m -—J;J = mg—y*

(1.4-10)
VA SISV 1L

which is nonlinear because of the y* term.

fi=fotz 2 From (1.4-8) we see that the “spring

y V¥ Rest position constant” k is 2v,. It depends not only on

the spring’s physical properties, which

yield the constant 2, but also on the

reference position y,. The constant 2y,

is the slope of the force-extension curve

of the spring at the position y,. This

position is determined by the spring’s

mg characteristics and the weight of the mass.

If mg=1, then y, =1 and k=2. For a

Figure 1.10  Free-body diagram of  larger weight, say mg=9, Yo =3 and
the mass-spring system. k= 6.

X




Linearization 17

The Multivariable Case

The Taylor series linearization technique can be extended to any number of variables.
For two variables the function is

w = f(y1,¥2) (1.4-11)

and the truncated series is

0 0
w = f(}’lo,}@o) + (-Eé) (1 =) (—f) (r2 —Y20)

Define
2 w—wozw_f(yloxyZO) (14'13)
e S 5 (= (1.4-14)
2 L R 1 (1.4-15)
The linearized approximation is
0 9
z = (—f x; + (-—i X,
W1/o 9Y2/o (1.4-16)

The partial derivatives are the slopes of the function f in the vy and y, directions at
the reference point.

As an example, consider the perfect gas law

mRT

Vv (1.4-17)

where p, V, T', and m are the gas pressure, volume, temperature, and mass, respectively.
The universal gas constant is R. If the gas is isolated in a flexible chamber, its mass is
constant, but its volume, temperature, and pressure can change. For given reference
values T, and V,,, a linearized expression for the pressure is

op op
= == = = =g
Paries (aT)O(T To) (aV)O(V 2 (1.4-18)
where p, = mRT,/V, and

o \" . (mRY - mR
o\ (1.4-19)
PR MmRE "__mRTO__b
oWl RS a2 (1.4-20)

Sometimes the following notation is used to represent the variations from the reference
values.

Pp = D-=p,
8T = T—T,
8V =V—v,
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In this case (1.4-18) through (1.4-20) give
6p = abT—bdV (14-21)

Since @ and b are positive, (1.4-21) shows that the pressure increases if T increases or
if V decreases.

Of course,.we do not need the linearized form to calculate p given ¥, T, m, and
R. However, if p were to appear in a differential equation with 7" or V" as inputs or
dependent variables, then the linearized form would be needed to obtain a linear
differential equation.

Linearization of Operating Curves

An element’s input-output relation is not always given in analytical form, but might
be available as an experimentally determined plot. For example, the operating curves
of an electric motor might look something like those in Figure 1.11. For a fixed motor
voltage v, and a fixed load torque T,, the motor will eventually reach a fixed speed
w, some time after the motor is started. This steady-state speed can be found from
the curve marked v, . For another load torque, say T,, the resulting speed w, can be
found from the same v, curve. However, if we fix the load torque but change the
voltage, the resulting speed must be found by interpolating between the appropriate
constant-voltage curves.

Suppose that the load torque T and the voltage v are to be inputs for a dynamic
model that will have the speed w as the output. Then we cannot use the curves as is
but must convert them to an analytical expression. This expression must be linear
if the dynamic model is to be linear.

A linearized expression can be obtained from the operating curves by using
(1.4-16) and calculating the required slopes numerically from the plot. The partial
derivative (3f/dy;), is computed with y, held constant at the value y,,. It can be
found approximately as follows (see Figure 1.12).

Speed
w

J

v = motor voltage

] =
T, T, Load torque T

Figure 1.11 Steady-state operating curves for an electric motor.
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f(a'yZo)
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Yio M
(&)

Figure 1.12  Graphical computation of the linearization derivatives for the function
f(¥1,2) near the point f,, = (¥, ¥2,).

ﬁ{ - f(a,}’zo)_f(ﬁ,J’zo)
0¥ifo a—f (14-22)
where the y; range (8, ) straddles y,, . Similarly
if; mf(.]"lo:'.r)_-.f(yh:)a"?)
b T (1.4-23)

9y,
The smaller (@ —f) and (y —n) are made, the better the approximation, but this is
limited by the ability to read the plot accurately for smaller increments.

1.5 FEEDBACK

A feature found in many static systems and in almost every dynamic system is one
or more feedback loops, such as shown in Figures 1.2, 1.3, and.1.4. Feedback is the
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process by which an element’s input is altered by its output. It occurs frequently in
physiological and ecological systems and is deliberately employed in manufactured
systems for several reasons, as we shall see. The human body utilizes many feedback
loops for such purposes as body temperature control, blood pressure control, hand-eye
coordination, and so forth. In nature, we can describe the alternating abundance and
scarcity of prey and predators as being due to a feedback mechanism that prevents
both species from becoming extinct.

Measurement of room temperature by a thermostat constitutes a feedback
process because the measurement is used to influence the room temperature (Figure
13). Similarly the spring in Figure 12 acts as a feedback element. The greater the
mass displacement, the greater the spring’s restoring force attempting to return the
mass to its rest position. The action of the diaphragm in the pressure regulator
(Figure 1.4) combines the actions of a comparator and a sensor. As the pressure p
increases, the diaphragm motion acts to move the valve to decrease the pressure.
Thus the output (the pressure) is made to influence itself.

Control systems rely heavily on the properties of feedback. We now explore
these properties in more detail.

Feedback Improves Linearity

As we indicated in Section 1.3, linear systems models will be the chief model form
to be used in our study. One of the reasons for this is that the use of feedback often
improves the linearity of the system. We can construct a system of elements whose
individual behavior is nonlinear, but with proper use of feedback the resulting system’s
behavior will be approximately linear.

To illustrate this effect consider the nonlinear element shown in Figure 1.13a.
Its input-output relation is

y =l (1.5-1)
If we introduce a feedback loop as in Figure 1.13b, we can write the following relations.
y =é
e =x—Y
Thus 5
y =&—J) (1.5-2)

The plot of y versus X for the original element and for the feedback system is
shown in Figure 1.13c. The feedback system’s input-output relation is closer to being
a straight line and therefore is approximately linear over a wider range of x than for
the original nonlinear element. This wider range is what we mean by “improved
linearity.”

Feedback improves linearity in dynamic as well as static systems. Chapter Six
provides several examples of this effect.

Feedback Improves Robustness

The coefficient values and the form of a model are always approximations to reality
and thus have some uncertainty associated with them. In addition, factors such as
wear, heat, and pressure can Cause the performance of a system to change with time.
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Yis¥
x y
> (-)?
(a)
X + e y
? ()2 >
(b)
Yy
J
T = Qriginal

relation (1.5-1)

[l Feedback
relation (1.5-2)

Figure 1.13 Improvement of an element’s linearity with feedback. (a) Original non-
linear element. (b) Original element with a feedback loop added. (c) Plots of the two
input-output relations.

Thus values of the design parameters that were optimal when the system was built
might no longer give the desired performance. A vacuum-tube amplifier is an example
of this effect. The heat generated causes the amplification factor to change in time.
In light of this we should always investigate a prospective design to assess the sensi-
tivity of its performance to uncertainties or variations in the system’s parameters.
Feedback can be used to improve the system’s behavior in this respect.

We have seen that one purpose of the thermostat is to compensate for changes
produced by variations in the outdoor environment — the system’s “disturbances.”
This is another use for feedback, and systems that can maintain the output near
its desired value in the presence of disturbances are said to have good disturbance
rejection.

A system that has both good disturbance rejection and low sensitivity to para-
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meter varations is said to be robust. We now illustrate how feedback can create or
improve robustness.

Parameter Sensitivity

First consider the reduction of parameter sensitivity. The element shown in Figure
1.14a has a proportional constant G (called the gain). We wish the gain value to be
G =10 and select an element that has this nominal value. However, suppose that
due to heat, wear, or poor construction, the actual value of G can vary by * 10%.

In this case the input-output relation

¥ G & will be somewhere between y =9x and
y=1lx, and this is considered unaccept-
{a) able.
3 " y To improve the situation we place a
e

G > feedback loop with its own gain K around
the basic element G. Presumably the
physical element we select to produce the
gain K will be relatively insensitive so that
(b) the value of K will be constant and pre-
dictable. This arrangement is shown in
Figure 1.14b. The governing relations are

Figure 1.14  Reduction of parameter
sensitivity with feedback. (a) Original

element with an uncertain gain G. (b) y = Ge, e =x—Ky
Insertion of a feedback element with a or
1
reliable gain K. If KG > 1,y = —x. ¥ = G x
K 1+ GK (1.5-3)

Note that if we pick G large enough so that GK > 1, then (1.5-3) becomes approxi-

mately c i
GK AR (1.54)

N

i

The system’s input-output relation becomes independent of G as long as GK is large!
We now pick K to obtain our desired input-output relation, here y = 10x. Thus K
must be K = 0.1, and we pick G such that 0.1G> 1 orG> 10.

Let us use G = 1000 and see what happens. From (1.5-3)

1000
Y =00

x =9901x

which is very close to the desired relation. Now if G varies by + 10% so that G = 900
and 1100, (1.5-3) gives

= 200 x = 9.8901
VS Tee e
and
LR oo
Y e A

The sensitivity of the feedback system is much lower. This method of reducing the
sensitivity is called feedback compensation.
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A common engineering application of this épproach is the stabilization of the
gain of an electronic amplifier (Figure 1.15). Engineers working on this problem in the
early part of the twentieth century discovered the principle of feedback compensation.
The amplifier gain A is large but is subject to some uncertainty. The feedback loop is
created by a resistor. Part of the voltage drop across the resistor is used to raise the

ground level at the amplifier input. From

S a L e the resistor’s voltage-current relation we
obtain
R,
R e, = Ale:—e, —
R, } 1 % ( : °Rl) {1:525)
(a) or v
B et
€o
> 1 -!-A}—g—2
Ry
IfARz/Rl > l, then
e E= &
oR (1.56)

Figure 1.15 Feedback compensation

of an amplifier. (¢) Circuit diagram. (b) Presumably the resistor values are suffi-
Block diagram, ciently accurate and constant enough to
allow the system gain R /R, to be reliable.
Another version of this application uses the operational amplifier (op amp). This
is a voltage amplifier with a very large gain (4 = 105 to 10%) that draws a negligible
- current. If resistors are placed in series and parallel around the op amp, as shown in

Figure 1.16, the system’s input-output relation will be

Ry
REs (159

e, =

This can be shown by writing the appropriate circuit equations. Since the current i3
is negligible, the voltage e, is nearly zero, and i; = i,. But

; e;— €
=
1
: €1 — €
i
2
Therefore
e;—¢€ = €1~ €q
R, R,
Since e, = 0, it follows that
€; L0 _E_q.
Ros Ry

which is equivalent to (1.5-7).
Op amps appear in many designs, and we will see more of them.
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Figure 1.16 Op amp multiplier. Note the sign inversion.

Disturbance Rejection

Consider the system shown in Figure 1.17a. The disturbance is u, and the desired
input-output relation between y and x is y = 10x. However, when u # 0, this relation
is not obtained because

y = S@x == 10x — Su

This can be remedied by introducing a feedback loop and two gain elements, B and
K, as shown in Figure 1.17b.

We can use the superposition principle to find the output y as a function of x
and u. First setu = 0 and solve fory asa function of x.

108
Pl = Tomeme
e 108K

Now replace u and set X = 0. Solve for y in terms of u to obtain

-5
y\ = e u
0 IOBK

(b

Figure 1.17  Use of feedback for disturbance rejection. (@) Original open-loop system.
(b) Feedback system.
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[nvoking superposition we obtain the general expression for ¥y by adding the above

results.
108 5

= u
1 + 10BK 1 + 10BK (1.5-8)

We desire that u have no effect on y, but this cannot be accomplished with finite
values of B and K. Therefore we back off somewhat and require only that no more
than 10% of the value of u show up in the output y; that is, we require that

< 0. 1u|

il
1+ 108K
This is satisfied if 5/(1 + 10BK) = 0.1. From the desired relation y = 10x we also have

108

=0
I + 108K

The last two conditions give B = 50 and K = 49/500. This design meets the speci-
fications and can be implemented if the values of B and K can be obtained physically
and are reliable. The price paid for this improvement is that we have a more expensive
system (due to the added elements B and K) and a possibly less reliable system (since
there are more elements to fail).

The Importance of Dynamic Models for Feedback Systems

We have used static systems to illustrate the properties of feedback, but its most
important applications occur in dynamic systems. Consider the motor operating curves
shown in Figure 1.11. Suppose that the motor speed, voltage, and load torque are
Wy, ¥y, and T initially, and that we wish to maintain the speed at cw,. If the load
torque increases, the speed will decrease. However, the operating curves do not tell us
how long it will take for the new speed to be established. The curves represent only
the steady-state behavior of the system as a static element. The inertia of the motor
obviously prevents the speed from changing instantaneously from the value w, to its
new steady-state value.

In order to keep the speed near its desired value we would use a controller. A
block diagram of the general situation is shown in Figure 1.18a. The controller would
sense that the speed had decreased and would increase the motor voltage. Again, the
curves give no information about the time it would take for the speed to return to its
desired value ), .

At this point it is not clear how we should design the controller to act. For
example, should it change the voltage in proportion to the difference between the
desired and actual speeds? Or should the voltage change be proportional to the rate
of change of the speed difference? The fact that the motor and its load have inertia
suggests that the time behavior of the speed depends to a great extent on the charac-
teristics of the controller. For example, suppose we make the voltage change pro-
portional to the integral of the speed difference such that

t
v = '02+KJ’edr
0

(1.5-9)
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Load
torque T

Desired Actual

speed Wy + speed w
Controller ——

Speed measurement

(a)

(b)

Desired
speed wy 4

Controller Motor

(c) -

Figure 1.18  Motor speed control. (a) General block diagram. (b) Transient behavior
of speed for different values of the controller gain K. (¢) Block diagram using 2
dynamic model of the load.

where e is the speed error wz — . We will see in Chapter Six that no steady-state
error due to a constant load-torque disturbance will exist if this control scheme is
used. This is because the voltage will not stop increasing until the speed difference
¢ becomes zero. However, if the proportionality constant K is made too large, the
controller can «“gyercompensate.” The result is an oscillation in speed about the
desired value. This effect is shown in Figure 1.18b. The initial time in that plot is
the time at which the load torque changes. On the other hand, if K is made smaller,
the oscillation does not occur, but the time to return  to w2 might be very long.
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Obviously we will need a dynamic model that includes the effect of the inertia
in order to design the controller properly. Such a model can be obtained by applying
Newton’s law. We assume that the motor and load inertias can be lumped into one
inertia /. The motor torque is 7', and this is resisted by a friction torque T}, which
can often be modeled as proportional to the speed; that is, Ty = cw. By summing the
torques on the inertia we obtain the dynamic model for the load speed.

ey
el e (1.5-10)
The block diagram of the system with the controller and motor is shown in Figure
1.18¢. When used with a motor model that relates motor torque to motor voltage,
the preceding equation is often sufficient to design the controller — for example, to
pick the proper value of K in (1.5-9).

The linearizing property of the feedback loop in the controller often allows
us to model the system as a linear one. In addition, the reduction of the system’s
parameter sensitivity means that a lumped-parameter, low-order dynamic model is
often satisfactory for the purpose of designing feedback systems. The model usually
cannot be static, but must describe at least the dominant dynamic behavior of the
system. We take up procedures for developing such models in the next chapter.

PROBLEMS
1.1 What is the causal relation for the following elements with the given inputs and
outputs?

(a) A capacitor (charge as input; voltage as output).
(b) Aninertia (torque as input; angular acceleration as output).
(c) Angular acceleration as input; angular velocity as output.

(d) A water tank with vertical sides (water volume as inplit', water height as
output).

(e) The heat energy stored in a body as. input; the body temperature as output.

1.2 Draw a block diagram for the following models. The inputs are u and v; the
output is y. The variables x and e are internal variables. Show these on the
diagram.

(2=
= v+ 3e—4y
e = u—272y
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1.3 Obtain the input-output relations for each of the diagrams shown in Figure P1.3
The inputs are u and v; the output is y.

(a)

(b)

Figure P1.3

1.4 Water-level controllers represent the carliest examples of control systems. A
simple version using a float and lever is shown in Figure Pl.4.

(a) Discuss the system’s operation.
How can we adjust the water
level that the system will main-
tain?

(b) Draw the block diagram with
the desired level as the com-
mand input, the actual level as
the output, and the change in
water supply pressure as the

disturbance. b
4

Figure P1.4
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1.6

1.7

1.8

1.9

1.10
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Problems 29

A person attempting to balance a stick on end in the palm of a hand constitutes
a control system. Draw the block diagram of the system. Is more than one
measurement involved?

A very long wire can have appreciable resistance. Should it be modeled as a
distributed-parameter element?

A certain cantilever beam has considerable mass. Should it be modeled as a
distributed-parameter element? Discuss how an approximate lumped-parameter
model might be developed.

s the following model nonlinear? Explain.

== —Jb S
dt S NPife<i0

Consider the savings growth model (1.3-7).
(a) Suppose that x(0) = $1.00. Find x(5), the amount of money at the end
of five years.

(b) Generalize the results of (a) to find an expression for x (k) in terms of x(0)
for any integer k.

Obtain a linearized expression for the following functions, valid near the given
reference values.

(a) w=cosy, Yo =T 0

(b)e W= cosW, wYor= /4

(c) w= (R Yo = 1

@ w=psinyz, Yo=1 Yo =74
(e) w Yily2, Yio =l lagi=0

The area A4 of a rectangle is A =y1V2, where y, and y, are the lengths of the
sides.

(a) Obtain a linearized expression for 4 if Y150 = 2,20 = 5.

(b) Givea geometric interpretation of the error in the linearization.
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1.12 Use the curves shown in Figure P1.12 to obtain a linearized expression for w =
f(y1,y2), valid near the point y 1o = 1,72, = 10.

w=

flyy . ¥2)

A

1.5

0.5

Figure P1.12

1.13 (a) Show that the two systems in Figure P1.13 have the same input-output
relation when the gain K is 100.
(b) If the gain K is subject to a * 10% uncertainty, which system is the least
sensitive?

(b)

Figure P1.13
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Problems 31

The following are common examples of control systems. Discuss their operation.
Do they employ feedback?

(a) Toaster. (d) Engine cooling system.

(b) Washing machine. . (e) Carburetor.

(¢) Engine camshaft. (f)  Traffic light.

Explain the feedback action in the following systems.

(a) The law of supply and demand in economic systems.
(b) Temperature control in the human body.

(c) Predator-prey interactions.

This story circulates in several forms. A worker at a factory was in charge of
activating the noon whistle at the plant. Being very conscientious and trusting,
every day he phoned the research lab at the nearby university to set his clock
according to their time. Eventually he became curious.and asked the university
researcher how he managed to keep his clock accurate. “Why, we set our clock
by the noon whistle at the local factory” came the reply.

Is this a feedback process? If the university clock gains 2 minutes per day,
what is the error in the timing of the “noon’ whistle at the end of 5 days?




